

The Precipitation and All-weather Temperature and Humidity mission

PATH - The Science

NRC Earth "Decadal Study":

PATH High frequency, all-weather temperature and humidity soundings for weather forecasting and SST

GEO MW array spectrometer \$450 M

From "Earth Science and Applications from Space - National Imperatives for the Next Decade and Beyond"; © 2007 National Academies of Science

PATH Science Highlights:

Temperature and humidity profiles

Current capabilities:

- Poorly observed
 - In-situ: Few, fixed locations
- · LEO satellites: Sampled 1-3x/day
- · GEO satellites: IR only = clear only
- Poorly predicted
 - · Models deficient in severe conditions

PATH capabilities

- Clear and cloudy conditions
- · Observe IN storms (except heavy precipitation)
- Every 15-30 minutes everywhere

Tropospheric wind vector profiles

Current capabilities

- LEO satellites: MODIS
 - · Polar regions only
 - · Limited-accuracy water vapor profiles
 - GEO satellites: IR sounder
 - · Poor sampling: clear only
 - · Uncertain height assignment
- GEO satellites: IR/Vis imager · Cloud tracking: cloud tops only

PATH capabilities

- Clear and cloudy
 - Including below clouds
- Continuous: no time gaps
- Applicable algorithms available

UW (Velden et al.)

Vertical structure of convection

Precipitation

Current capabilities

- Poorly sampled
- · In-situ: Few, fixed locations
- Radar: Regional coverage only
 LEO satellites: Sampled 1–2x/day
- · GEO satellites: IR only Û Indirect
- Poorly predicted

PATH capabilities

- Derived from scattering signature
- · All conditions and locations, every 15 min
- Continuously calibrated to GPM
- Applicable algorithms available
 - NOAA (Weng et al.) · UW (Rennartz et al.)
- MIT (Staelin et al.)
 Others under development

PATH - The Mission

Notional mission

- Objective: Observe US hurricanes & severe storms
 - Primary: Atlantic hurricanes
 - Secondary: CONUS severe storms; E. Pac. hurricanes
- ROI focused near E. Carribbean
 - Center @ 75°W, 20°N
 - · Can be pointed in other directions
 - 90+ % of visible disc is in alias-free region

 - Highest sensitivity in "circle" of radius 45° · Exploring antenna designs to maximize high-sensitivity region
- Alternative mission: "Pacific ENSO Observatory
- Adequate sensitivity with array radiometer
 - ~ 20 minutes "integration time" to reach 1/3 K for water vapor (183 GHz) in central part of ROI
 - · T-band (50 GHz) is twice as sensitive/responsive
 - Exploring designs to improve these numbers
 - · Exploring methods to increase temporal resolution
 - Focus is on high-value soundings in cloudy/unstable conditions
 - Synergy with scatterometer & GOES-R sensors (ABI, GLM)

Focus themes: Hurricanes & severe storms

Mission requirements

Mission Objectives	Measurement Requirements	Instrument Requirements	Mission Requirements	
Observe and improve understanding and modeling of hurricanes, severe weather and related hydrology-cycle processes: N. Atlantic hurricanes CONUS severe storms E. Pacific hurricanes Tropical moisture transport Oceanic and continental atmospheric processes Diurnal cycles	Functional a) Soundings • T(z): 2 K/2 km • (z): 20% / 2 km • L(z): 40% / 3 km • TPW: 10% • LWC: 20% b) SST • <0.5 K c) Precipitation • 25–50% Temporal • 15–30 minutes Spatial • T: <50 km/nadir • q: <25 km/nadir Coverage • Troposphere • Surface • All-weather • Continuous • ROI	Spectral AMSU ch. 3–8 AMSU ch. 17–20 Radiometeric <1K requirement <0.25 K goal Antenna 104/arm @ 50 GHz 192/arm @ 183 GHz ~4 λ spacing Struct. stability 0.5° @ center 1.5° @ periphery Thermal T _{op} = 30°C ΔT <1°C Data bandwidth 1 Mbps throughput	Orbit Geostationary, 75°W Attitude Pitch: 3.3°N Ctrl: 38 arcsec Stab: 1 arcsec/sec Power & mass Power range: 255–340 W Mass: 230 kg Thermal 2 m² radiator + heat pipes Operation Continuous Data Latency: <15 min Rate: 1 Mbps avg Volume: 5 G9/day Calibration Ground transmitter	

Data products

Mature products:

mature products:						
Parameter	Horizontal	Vertical	Temporal	Accuracy		
Tb (50 GHz)	50 km	(6 channels)	3 min per ch.	< 1/3 K		
Tb (183 GHz)	25 km	(4 channels)	5 min per ch.	< 1/3 K		
Temperature	50 km	2 km	20 min	1.5-2 K		
Water vapor	25 km	2 km	20 min	25%		
Liquid water	25 km	3 km	20 min	40%		
Stability index	50 km	N/A	20 min	N/A		
TPW	25 km	N/A	20 min	10%		
LWC	25 km	N/A	20 min	20%		
SST	100 km	N/A	1 hour	< 0.5 K		

Evolving experimental products:

Parameter	Horizontal	Vertical	Temporal	Accuracy
Rain rate	25 km	N/A	20 min	2 mm/hr
Convect. intens.	25 km	N/A	20 min	N/A
IWC	25 km	N/A	20 min	30%
Wind vector	25 km	2 km	30 min	TBD

Mission options

Payload: "Array radiometer" (GeoSTAR)

1) Standalone mission

2) Hosted payload

Easy to integrate without interfering with other payloads

Applications

- Regional weather forecasting: all-weather observations
- Hurricane diagnostics: intensification, vertical structure
- Flood warnings: storm total precipitation
- Pollution transport: hemispheric 3-D wind fields (no gaps)
- Process studies: hydrologic cycle (vapor, liquid, ice)
- Climate studies: T/q trends, storm climatology (life cycle)

Synergy

- · GPM: fill swath-time gaps
- Scatt (XOVWM): vertical continuity, surface → upper tropo.
- GOES-R: merged products with ABI, GLM & future HES
- LEO sounders (NPP/NPOESS etc.): fill swath-time gaps
- Other D-S missions: 3D-Winds, ACE (clouds), GPSRO (T/q profiles), SMAP (flooding), SWOT (river flow)

Contact: Bjorn Lambrigtsen (lambrigtsen@jpl.nasa.gov, 818-354-8932)